Simulating Classifier Outputs for Evaluating Parallel Combination Methods
نویسندگان
چکیده
The use of artificial outputs generated by a classifier simulator has recently emerged as a new trend to provide an underlying evaluation of classifier combination methods. In this paper, we propose a new method for the artificial generation of classifier outputs based on additional parameters which provide sufficient diversity to simulate, for a problem of any number of classes and any type of output, any classifier performance. This is achieved through a two-step algorithm which first builds a confusion matrix according to desired behaviour and secondly generates, from this confusion matrix, outputs of any specified type. We provide the detailed algorithms and constraints to respect for the construction of the matrix and the generation of outputs. We illustrate on a small example the usefulness of the classifier simulator.
منابع مشابه
A New Classifier Simulator for Evaluating Parallel Combination Methods
The use of artificial outputs generated by a classifier simulator has recently emerged as a new trend to provide an underlying evaluation of classifier combination methods. In this paper, we propose a new method for the artificial generation of classifier outputs based on additional parameters which provide sufficient diversity to simulate, for a problem of any number of classes and any type of...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملPresenting a New Model for Bank’s Supply Chain Performance Evaluating with DEA Solution Approach
Data Envelopment Analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs) with multiple inputs and outputs. The traditional DEA treats decision making units under evaluation as black boxes and calculates their efficiencies with first inputs and last outputs. This carries the notion of missing some intermediate measures in the process of changing the inputs to...
متن کاملClassifier Combination : the Role of a - Priori Knowledge
The aim of this paper is to investigate the role of the a-priori knowledge in the process of classifier combination. For this purpose three combination methods are compared which use different levels of a-priori knowledge. The performance of the methods are measured under different working conditions by simulating sets of classifier with different characteristics. For this purpose, a random var...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003